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Abstract

The recent technological achievements in sensors and embedded systems have prompted the
integration in several civil and military applications of autonomous systems such as Unmanned Aerial
Vehicles (UAV) capable of efficiently executing surveying and monitoring missions in locations otherwise
considered dangerous or inaccessible. Some of those missions require the acquisition of sensor data
close to objects and areas of interest located on the ground. In this thesis, it is necessary to determine
the path that will allow the UAV to roam the mission site safely and dynamically by easily avoiding
terrain obstacles and while maintaining a constant and close proximity to the ground. This thesis
proposes an optimal trajectory generation algorithm based on gradient search methods to generate the
flight path for the UAV and an optimization controller capable of precisely track those trajectories.
The proposed solution considers a non-linear model dynamics approximation of the autonomous system
and determines a discrete trajectory that satisfies Terrain-following and waypoint tracking constraints
and minimizes a cost function that aims to reduce the mission’s time and acceleration. The trajectory
optimizer performs an offline preliminary optimization based on previously acquired data of the terrain
elevation in the mission’s site. The path planner’s performance is tested and discussed for several
scenarios with different elevation profiles. In order to precisely perform Trajectory tracking and path
following of the determined optimum trajectory in the presence of disturbances, this paper also presents
the design, implementation and testing of a Model Predictive Control (MPC). This online planning and
control strategy is also an optimization problem that aims to minimize a quadratic function designed
to penalize state errors while satisfying the imposed dynamic constraints. The MPC was tested in a
physics simulation environment (Gazebo) where a realistic terrain and a model of the Fleet of dRones
for radIological inspEction, commuNication anD reScue project [1] UAV was integrated to further
validate the stability and robustness of the designed controller.
Keywords: UAV, Optimal trajectory, Terrain-following, Waypoint tracking, Model Predictive Control

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAV)
have gained significant popularity among academ-
ic researchers and industries which has promoted a
reduction in the costs of several sensors, actuators
and batteries, making them more practical and ac-
cessible, technically enabling their integration in a
wide range of civil applications.

In some of those applications, measurements have
to be performed close to the objects of interest
that are placed on the ground. This is the case
for project FRIENDS (Fleet of dRones for radI-
ological inspEction, commuNication anD reScue),
where this article is integrated on. Therefore, this
paper’s goal arises from the requirement that the
project’s UAV must navigate in close proximity
to the ground, where the expected low intensity
sources of radiation are located, in order to esti-
mate the radioactivity level of the scenario using
reduced sensitivity sensors.

The use of UAVs for monitoring and mapping of
radioactive scenarios has gained popularity in re-
cent years due to their simplicity and versatility
with the appearance of several academic, military
projects and commercial options such as MOBISIC
[2] and AVID LLC [3].

For this work, the main interest is to design a
strategy capable of realizing autonomous flight by
optimizing and following trajectories in space, con-
verting the multi-rotor platform, driven initially
by a human operator, into a fully Unmanned Au-
tonomous Vehicle. In the first stage, we address
the design of a trajectory optimizer based on the
objectives and constraints that follow from the re-
quirements of the project’s surveillance and inspec-
tion missions. In the second stage, we tackle the
problem of precisely and safely tracking this trajec-
tory in real-time by relying on concepts of Model
Predictive Control (MPC).

Regarding the optimal trajectory generation, re-
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search studies differ mostly on the type of trajec-
tories and on the type of constraints used. The
implementation of optimal control strategies based
on the discretization of the non-linear dynamics of
aerial systems has been widely used to determine
terrain-following and avoidance trajectories [4, 5] by
augmenting the optimization problem with specific
constraints. A different approach addressed in [6] is
the use of fuzzy logic methods to model the flight al-
titude and gradient of the terrain. It is also possible
to optimize a continuous spline to perform terrain
avoidance flight. This is the case of [7] where the
search structure is extended using a spline-RRT*
method to generate smooth and continuous paths.

The introduction of the waypoint tracking prob-
lem in the trajectory generation has also been
solved by many different approaches. One exam-
ple is proposed in [8] that generates an optimal
and smooth trajectory capable of going through
waypoints and minimize the trajectory derivatives
by approximating the UAV dynamics using a dis-
crete linear model. Paper [9] introduces a formu-
lation where the progress through the waypoints
is bounded by complementarity constraints and
mixed-integer progress variables. This objective
can also be fulfilled by generating a continuous poly-
nomial where the goal is to minimize path deriva-
tives and total segment time [10].

Our approach is based on the work of [11]
that presents a fast optimum control algorithm for
quadrotors capable of flying through waypoints by
assigning a certain number of discretization step-
s between each waypoint and then optimizing the
time for each of the segments as an independent op-
timization variable, resulting in discrete path with
different time steps.

When it comes to precise UAV control in the p-
resence of disturbances, many techniques and aug-
mentations have been studied in a variety of differ-
ent control designs. The simplest and most com-
mon control strategy is the standard PID (Propor-
tional, Integral and Derivative) controller [12, 13]
where a feedback mechanism is capable of rejecting
disturbances by running the state errors through a
closed-loop. A more complex approach is presented
in [14, 15] where precise trajectory-tracking control
is developed based on a Lyapunov back-stepping
technique that approximates the non-linear dynam-
ics of the UAV to a linear state space. In recen-
t years the technological developments prompted
the implementation of optimal online planning and
control strategies that consider the dynamic model
of the autonomous system and determines an op-
timum trajectory based on user-defined objectives
and constraints [16, 17].

Our approach is based on the system simplifica-
tion presented in [18] where the low-level control

is assumed to be performed onboard by an inde-
pendent autopilot and the translational dynamics
is controlled off-board by a Non-linear Model Pre-
dictive Control coupled with an Extended Kalman
Filter applied to an approximation of the UAV dy-
namics.

2. Hexarotor Dynamics and Kinematics
In order to derive the equations of motion (EoM)
for a multirotor I consider the preliminary assump-
tion that the curvature of the Earth and its rotation
can be ignored in the mission’s area since the dura-
tion and scale of the operation is considerably small
when compared to the Earth. From those assump-
tions we can define two useful coordinate systems
as shown in Figure 1:

� A Earth fixed and Inertial frame {I}
(eIx; eIy; eIz) tangent to the earth surface that
uses the East, North, Up (ENU) system of co-
ordinates.

� A body fixed frame {B} (eBx ; eBy ; eBz ) whose
center coincides with the center of mass of the
vehicle.

Figure 1: Representation of Inertial and Body
frames.

The vehicle configuration is described by the po-
sition of the center of mass in the inertial frame {I}
and the orientation of the {B} frame with respect
to the inertial frame [19]. The last is usually defined
by means of Euler angles: roll φ, pitch θ and yaw
ψ. For sake of simplicity, let us denote the vectors
for inertial position and body frame orientation by
means of p = [x, y, z]T and η = [φ, θ, ψ]T , respec-
tively, where φ ∈ ] − π/2, π/2[, θ ∈ ] − π, π[, and
ψ ∈ ]− π, π[. In order to deduce the equations de-
scribing the orientation of the mobile frame relative
to the fixed one, we further defined an orthogonal
rotation matrix RBI(η) which can is determined
through successive rotations about the three axes.

The FRIENDS’ project drone is a generic
Hexarotor X geometry, with six rotors, mounted
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symmetrically along two orthogonal axes. For this
UAV model, two main forces act during flight: the
gravitational force and the thrust force. These
forces acting on the vehicle can then be written,
respectively, as

� Force of gravity in I frame: Fg = −mg

� Rotor’s thrust in B frame: Fi = knω
2
i

where m is the model’s mass, g is the gravitational
acceleration, kn is the thrust constant and ωi ≥ 0
is the rotation speed of the i-th rotor.

As mentioned in [18], we can additionally con-
sider the influence of two important aerodynam-
ic effects that appear in the case of dynamic ma-
noeuvrers. These effects are the blade flapping and
induced drag, which induce forces in the x-y ro-
tor plane that contribute to the horizontal stability
UAV as shown in [20]. Although these two effects
are treated as separate in [20], [21] showed that it
is possible to combine these effects into a lumped
coefficient Ad = diag(cxd , c

y
d, 0). If the UAV is

symmetric in the x-y axis the two coefficients can
be considered equal, cxd = cyd = cd.

This leads to the aerodynamic drag force Fa,i de-
fined as:

Fa,i = FiAdvB (1)

The roll and pitch torques derive from the pro-
pellers’ thrust and can be determined by MT =∑
ri × Fi, where ri is the momentum arm of each

propeller’s thrust in the {B} referential. Finally,
the yaw torque is produced when the angular ve-
locity of propellers rotating ”clockwise” differs from
the angular velocity of propellers rotating ”counter-
clockwise” creating unbalance in the sum of mo-
ments with respect to eBz .

Assuming that the UAV is a symmetrical and
rigid structure we can derive the equations of mo-
tion for the full system

ṗ = vI , (2a)

v̇I =
1

m

(
RBI

6∑
i=1

(
Fi + Fa,i

)
+ Fext

)

+

 0
0
−g

 , (2b)

ẇB = J−1(−wB × JwB +MB) . (2c)

where vI is the linear UAV velocity in frame {I}
and wB is the angular velocity of the aerial vehi-
cle around each axis of the {B} frame. Fext is the
vector of external forces acting on the vehicle, MB

is the vector of aerodynamic torques caused by the
propellers and J is the inertia matrix of the hexa-
copter model.

In this paper, the attitude dynamic model of the
UAV employed in both optimization problems is
based on a cascaded approach studied in [22] that
assumes that the vehicles low-level control is per-
formed by a separate module based on a closed-loop
Proportional architecture that is able to indepen-
dently track desired roll, φdes, pitch, θdes, and yaw,
ψdes, angles [18]. Therefore, the rotational dynam-
ics of the Hexacopter can be approximated by a sim-
ple and generic model that reliably and consistent-
ly represents the dynamic behavior of the internal
autopilot modules. These simplified dynamics can
either be modeled mathematically if the controller
architecture is known or empirically by using exper-
imental data and system identification techniques
to approximately determine the parameters of the
dynamic simplification.

Similarly to [18], for the MPC we choose a first or-
der dynamics to represent the inner-loop behaviour
of the UAV represented as follows:

η̇ =
1

τ
(Kηcmd − η) (3)

where ηcmd = [φcmd, θcmd, ψcmd]
T is the vec-

tor containing attitude control references and τ =
[τφ, τθ, τψ]T , K = [Kφ, Kθ, Kψ]T are the vec-
tors of time constants and gains of the inner-loop
behaviour respectively. Inside the MPC the yaw
control and dynamics are simply simulated to re-
duce the non-linear effect of a varying yaw trajec-
tory, since yaw does not influence the translational
dynamics of the UAV.

In the trajectory optimization problem, using the
same approximated model as the MPC is important
to, not only, reduce the computation time, but also
to facilitate the integration of the optimization re-
sults in the MPC. However, the model used in the
MPC does not allow for constraints in angular ve-
locity or linear acceleration that are required to ob-
tain a smooth trajectory. To this end, the attitude
dynamics applied in this optimization problem are
approximated by a second-order system that allows
the control inputs to be the same as in the MPC
but gives a good estimation of the angular velocity.
The attitude second-order dynamics is described by
the following equations:

ẇI = −2ξωwI + ω2(Kηcmd − η) . (4)

where wI = [φ̇, θ̇, ψ̇]T is the vector of the
Inertial Frame angular rates, ξ = [ξφ, ξθ, ξψ]T ,
ω = [ωφ, ωθ, ωψ]T and K = [Kφ, Kθ, Kψ]T

are the vectors of damping constants, natural fre-
quency and gains for the second order approxi-
mation of the attitude dynamics respectively and
ηcmd = [φcmd, θcmd, ψcmd]

T is the vector of atti-
tude reference inputs.
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3. Trajectory Generation Formulation
In this section, we tackled the formulation and im-
plementation of an optimum control trajectory ca-
pable of performing safe and efficient terrain follow-
ing and waypoint tracking while satisfying the UAV
dynamic constraints.

As mentioned the attitude dynamics applied in
this optimization problem are approximated by a
second order system (Eq. (4)). The translational
dynamics implemented are a simplified version of e-
quation (2b) where the aerodynamic drag term and
external forces are ignored and the individual ro-
tor thrust is substituted by a total and normalized
thrust, T̃ , input as follows:

v̇I = RBI(η)

0
0

T̃

+

 0
0
−g

 . (5)

In order to minimize and set a maximum limit for
linear acceleration, we added an integrator to the
system dynamics, since the translational dynamics
that describe a multi-rotor do not include accelera-
tion as a state. The dynamics of the added velocity
integrator is as follows:

v̇int = a . (6)

where vint is the state of the integrator that repre-
sents the velocity of the UAV and a is the accelera-
tion defined as an input in the integrator’s dynam-
ics. In order to link the integrator dynamics with
the overall multirotor dynamic model, the velocity
vint is constrained to be equal to the velocity of the
UAV model, vI.

The described system dynamics represent the fol-
lowing state and input vectors:

X =
[
pT vTI ηT wTI vTint

]T
(7a)

U =
[
T̃ φcmd θcmd ψcmd aT

]T
(7b)

3.1. Trajectory Optimization problem
The general statement of a trajectory optimization
problem where the goal is to minimize an objective
function is:

Minimize F(χ)

w.r.t. χ (8)

subject to Gi(χ) = 0, i ∈ E
Hi(χ) ≤ 0, i ∈ I

where F is the optimization function, χ =
[XT , UT ]T is the vector of optimization variables,
E and I are the sets of equality and inequality con-
straints, respectively.

From the continuous dynamic equations that de-
scribe the UAV, it is now necessary to define a set

of discrete constraints that can be used by the op-
timization problem. From the several discretiza-
tion methods that could be applied, we decided to
use collocation methods since they have numerical
advantages over other techniques, such as shooting
methods. We incorporate the system dynamics as e-
quality constraints between time steps Xi and Xi+1

using a first-order backward Euler approximation as
follows:

0 = Xi+1 −Xi − f(Xi+1, Ui+1)∆tk . (9)

where ∆tk is the discretization time step for the
trajectory segment k that links waypoint k − 1 to
waypoint k and f(Xi+1, Ui+1) is the derivative of
the robot states in the collocation point i+1 derived
from the solution of the dynamic equations.

One of the objectives of this optimization prob-
lem is to generate a trajectory capable of passing
through pre-determined waypoints defined in the
2D horizontal plane and represented by the vector
pwk = [xwk , y

w
k ] .

In our formulation, each of the K waypoints is
allocated to a specific discretization node defined
by the number of collocation points, N , between
waypoints. To guarantee that the trajectory passes
each waypoint k = 1, . . . , K within a tolerance σw
at node kN , a constraint-based formulation can be
used, such as

(p′kN − pwk )T (p′kN − pwk ) ≤ σ2
w (10)

where p′kN is the part of the state vector X that
represents the horizontal position at node kN .

The main aim of the trajectory optimizer is to
compute a terrain-following path. In our formula-
tion, it is assumed that the terrain being followed
is preliminarily available from a known DEM (Dig-
ital Elevation Map) file. In order for the solution
algorithm to be effective, smooth derivatives of the
terrain data are required. This can be achieved by
approximating the data matrix with a tensor prod-
uct cubic B-spline.

The terrain following objective was incorporated
in the optimization problem as a weighted norm of
the aircraft altitude difference to the desired value
above the terrain, hdes, as follows:

FTF =

∫ tf

t0

kTF [z(t)− hdes − hterrain]2 dt (11)

where hterrain is the height of the terrain at the
multirotor’s position and kTF is the weight of this
cost function in the total cost of the optimization
problem.

The Terrain Avoidance problem requires the def-
inition of additional path constraints to guarantee
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that the UAV does not fly above a maximum height
or below a minimum safety height.

h− ≤ z(t)− hterrain ≤ h+ (12)

Another goal of the optimization problem is to
minimize the total trajectory time. The main prob-
lem of a time-optimal trajectory arises when this
objective is coupled with the waypoint tracking
problem. When we allocated each waypoint to a
specific node we are also constraining the time at
which the trajectory passes this waypoint. To tackle
this problem a time elastic band-based formulation
is used where the time to go from one waypoint to
the next, ∆Tk, is an optimization variable, resulting
in different discretization steps for every trajectory
segment of the form

∆tk =
∆Tk
N

. (13)

where N is the independent variable representing
the number of discretization steps (Fig. 2).

In order to optimize the total trajectory time a
cost function penalizing the terminal time is added:

Ft =

∫ tf

t0

ktimedt = ktime

k∑
i=1

∆Tk (14)

where ktime is the terminal cost factor.

Figure 2: Time Elastic Band Formulation.

Two additional costs were also added to the opti-
mization function: a minimum acceleration cost Fa
and a yaw function Fψ that aims to keep ψ equal to
the angle between the previous and next waypoints.

Fa =

∫ tf

t0

aT kaa dt (15a)

Fψ =

∫ tf

t0

kψ[ψ − ψdesk ]2dt (15b)

where a is the acceleration vector of the UAV, ψdesk

is the desired yaw for the waypoint segment k =
1, . . . ,K and ka, kψ are the weight coefficients for
the acceleration and yaw costs.

In order to satisfy all the necessary objectives,
the problem’s cost function is defined as the sum
of all the formulated objective functions. The com-
promise in the solution is determined by the relative

weighting applied to each cost which can substan-
tially change the optimum trajectory.

Finally, we introduced constraints in the final and
initial states creating a two boundary value problem
as follows.

X(t0) = X0 bound on initial state

X−f ≤ X(tf ) ≤ X+
f bound on final state

(16)

An additional constraint for maximum horizontal
velocity defined as follows is added to ensure the
sensor data collected by the UAV can be correctly
used.

v2
x + v2

y ≤ (V +
xy)2 (17)

Other than the path constraints some state and
input inequality constraints were applied to prevent
over actuation leading to undesired high pitch and
roll.

X− ≤ Xi ≤ X+ (18a)

U− ≤ Ui ≤ U+ (18b)

The Trajectory optimization problem described
in this chapter is implemented and tested using the
CasADi toolbox. This open-source software is very
versatile and contains algorithms of sensitive analy-
sis capable of determining the derivatives of the cost
function and constraints without the direct Jaco-
bian and Hessian formulations from the user. From
the several NLP solvers that interface with CasA-
Di, we choose to use IPOPT which is an open-source
primal-dual interior-point method.

4. Optimal Control Formulation
This section is dedicated to the design and imple-
mentation of a continuous-time non-linear Model
Predictive Controller, which can follow in real-time
the paths computed by the trajectory optimizer de-
scribed in the previous chapter. The method imple-
mented was based on the work presented in [18, 23],
adapted to the problem at hand and software used.

In order for the control optimization algorithm to
be able to run in real-time the computation time at
each time step must be considerably smaller than
the sampling time of the controller. This can be
achieved by reducing the number of state variables
and simplifying the system dynamics of the robot.

As mentioned, the MPC implements a first-order
approximation of the attitude dynamics described
in equation (3). The translational dynamics imple-
mented is similar to equation (2b) where, similarly
to the trajectory optimization, the individual ro-
tor thrust is substituted by a total and normalized
thrust input.

The state-space vector of the optimization control
problem is:
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Xi =
[
pT vTI ηT

]T
(19)

And the control input vector, U , consists of tree
inputs,

Ui =
[
T̃ φcmd θcmd

]T
(20)

4.1. External Disturbance Estimation

The external disturbances Fext present in the dy-
namic model of the UAV are estimated by an Ex-
tended Kalman Filter (EKF) that employs the same
translational model used in the MPC (2b), but with
the second-order attitude dynamic approximation
that was also used in the trajectory optimization
design, (4). The EKF uses the autopilot estimated
state information to iteratively determine the ex-
ternal forces acting on the multirotor.

This estimator will reduce, not only, the effect
of unpredictable external disturbances, like wind,
but also capture modeling error that the model
may have in the attitude and drag approximations
applied, achieving zero steady-state tracking error
[24].

4.2. Model Predictive Control

MPC is a method of iteratively solving an optimiza-
tion problem for a finite time horizon and can be
generally formulated as:

Minimize FN (X,U)

w.r.t. X, U (21)

subject to Ẋi = f(Xi, Ui)

Xi ∈ XC

Ui ∈ UC

where N is the length of the prediction horizon
and UC, XC represent the set of input and state
constraints respectively. X = [X0, . . . , XN ] and
U = [U0, . . . , UN−1] are state and input sequences
for the time horizon.

In this implementation, a real-time iteration
scheme based on Gauss-Newton is applied to ap-
proximate the non-linear optimization problem and
iteratively improve the solution during the runtime.
A Multiple shooting technique is employed to dis-
cretize the system dynamics with a sampling time
∆t over a coarse discrete-time grid t0, . . . , tN .

When formulating the MPC optimization prob-
lem, it is important to ensure that it can be solved in
the short time available. For that reason, the opti-
mization problem is typically cast into a Quadratic
programming (QP) formulation where the objective
function used is the common and popular Linear
Quadratic Regulator (LQR) of the form:

FN (X,U) = ‖XN–Xref
N ‖

2
R

+

N−1∑
i=0

(
‖Xi −Xref

i ‖
2
Q + ‖Ui–Urefi ‖2P

)
(22)

where i is the index along the prediction horizon,
Q, R, P are the state error, goal state error and con-
trol action error weight matrices respectively, Xref

i

is the state reference signal at time step i and Urefi

is the input reference.
In the precise trajectory tracking problem, the s-

tate and input references are calculated by the tra-
jectory optimizer and represent the intended dy-
namics for the UAV, serving as a baseline for the
trajectories to be generated by the MPC. Howev-
er, this controller can also be used to optimize the
path to reach a certain reference position or to hover
above the current location by setting the reference
Xref
i constant in the optimization horizon.
For this simple control problem, apart from the

dynamic constraints, the only extra constraints con-
sidered are bounds imposed on the control inputs
and dynamic states, in order to avoid saturation of
the actuators and prevent the system from showing
unwanted behaviour.

U− ≤ Ui ≤ U+ , (23a)

X− ≤ Xi ≤ X+ . (23b)

The optimization problem was implemented in a
C++ interface for ACADO that can be easily com-
piled and executed, solving the optimization prob-
lem and allowing for a quick preliminary validation
test. The OCP can be expressed as a Non-linear
Program that can be solved using qpOASES solver.

5. Simulation and Results
The methods presented in Sections 3 and 4 are test-
ed and validated in this section where we present
the results from the Python and CasADi trajecto-
ry optimization along with the simulation result-
s of the MPC in a ROS and Gazebo environmen-
t using the FRIENDS’ Hexacopter model and the
PX4 autopilot firmware running in software-in-the-
loop (SITL) mode. All the following tests and sim-
ulations were conducted on a Hp Laptop running
Ubuntu 18.04 and equipped with an Intel Core i7-
9750H CPU @2.60GHz and 16,00GB of RAM.

5.1. Trajectory Optimization Results
To validate the trajectory optimization algorithm,
several different tests were made, varying the ter-
rain profile, waypoint arrangement and even dis-
cretization steps. We consider the results of two
scenarios to assess the capabilities and difficulties
of the selected approach.

6



On the left side of table 1, we show the second-
order attitude dynamic parameters which are con-
stants obtained from the system identification pro-
cedure for the FRIENDS Hexacopter model. The
right side of the table contains the state, input and
path limits of the optimization problem.

Table 1: Trajectory optimization parameters and
coefficients.

Attitude Constants Optimization Limits

Kφ 0.9757 V +
xy 1.0 [m/s]

Kθ 0.9862 V +
z 1.0 [m/s]

Kψ 0.9762 φ̇+ 180 [◦/s]

ωφ 6.2179 θ̇+ 180 [◦/s]

ωθ 6.0429 ψ̇+ 25.0 [v/s]

ωψ 3.8762 T− 7.0 [m/s2]

ξφ 0.9353 T+ 15.0 [m/s2]

ξθ 0.9216 φ+ 25.0 [◦]

ξψ 0.8653 θ+ 25.0 [◦]

a+ 1.0 [m/s2]

The first scenario is a simple example that us-
es real terrain elevation data obtained from the
United States Geologic Survey National Elevation
Dataset [25]. In this scenario we included three
waypoints bounded to a specific node with a tol-
erance σw = 0.5[m]. The number of discretization
steps was chosen to beN = 80 based on the horizon-
tal distance and velocity between waypoints. For
the height constraints we chose to set the minimum
and maximum altitude allowed above the terrain to
h− = 2.5m and h+ = 3.5m respectively.

The optimized trajectory is shown in figure 3
where it is possible to see that the waypoint track-
ing and terrain-following objectives of the trajecto-
ry were fulfilled with the altitude of the UAV re-
maining inside the allowable interval. The mean
computation time over 50 optimizations was then
determined to be 0.842 [s] for this scenario.

The second scenario is formulated to assess the
results of the proposed approach when the terrain
data contains significant discontinuities that could
represent a cliff or wall. In this case, we introduced
a 7 [m] wall in the altitude matrix data with 0.9 [m]
of width.

Due to the exclusive vertical formulation of the
terrain constraints, we can conclude that as the ter-
rain becomes steeper and more discontinuous the
feasible tunnel of the z coordinate becomes less wide
and for a vertical wall it will result in an impossible
problem where the maximum and minimum alti-
tude constraint surfaces overlap. Therefore, for the
following scenario we did not include the maximum
altitude constraint but instead relied on the terrain
following cost (Eq. (11)) to maintain the UAV close
to the desired altitude.

(a) Trajectory in 3D.

(b) Top-down view of the trajectory.

(c) Trajectory in 3D.

Figure 3: Optimized trajectory for scenario 1.

The effect of this cost weight is illustrated in the
two following tests where all constants, weights and
constraints are kept constant except the terrain-
following weight kTF . The number of discretization
steps was chosen to be N = 200 and the minimum
altitude allowed was h− = 2.5m. We can conclude
that if the weight kTF is higher (Fig. 5) the result-
ing trajectory will climb the wall almost vertically
to maintain the vertical distance to the ground as
constant as possible if this weight is smaller (Fig.
4) the minimum time objective takes over and the
trajectory transposes the wall with an arc-like tra-
jectory.

For the first case, the mean computation time for
the iterative optimization process, in this case, is
5.719 [s] and for the second test, due to the high
gradients of the altitude constraints and the clos-
er proximity to the wall this test requires a higher
computation time with a mean of 10.526 [s] over 50
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optimizations.

(a) Trajectory in 3D.

(b) Top-down view of the trajectory.

Figure 4: Optimized trajectory for the first test of
scenario 3.

(a) Trajectory in 3D.

(b) Top-down view of the trajectory.

Figure 5: Optimized trajectory for the second test
of scenario 3.

Although the minimum altitude constraint is al-
ways fulfilled in both tests, the fact that the UAV

is considered as a point means that in the second
test a 3D UAV would collide with the wall in the
horizontal plane. To solve this problem further im-
provement in the UAV representation or the mini-
mum altitude constraint must be performed in fu-
ture work.

5.2. Online Control Results
In order to test and verify the MPC discussed in sec-
tion 4, we first designed and integrated a 3D CAD
model of the FRIENDS’ project Hexacopter (Fig.
6) into the Gazebo+SITL environment. The goal
was not only to have a simulation model similar to
the real Hexacopter but also to create an environ-
ment where it is possible and practical to simulate
and test different sensors.

Figure 6: Gazebo model of the FRIENDS Project’s
drone.

The proposed navigation and control architecture
of this work is illustrated in figure 7. Initially, the
trajectory optimizer receives 2D waypoints and de-
termines the optimum control path. The optimized
trajectory is properly sampled and is ultimately
used as a reference to be tracked by the position
Modular Predictive Controller.

Figure 7: Multirotor Control Architecture.

In our setup, the optimization controller is run-
ning at 50 Hz while internally the prediction sam-
pling time is ∆t = 0.1 [s], in this way we achieve
a longer prediction horizon with less computational
effort. By enforcing the iteration to run roughly 5x
faster than the discretization time, we obtain smal-
l deviations of the predicted state vector between
iterations which facilitates convergence. The pre-
diction horizon is set to be divided into N = 20
steps resulting in 2 seconds of prediction time for
each iteration.
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The MPC parameters used in the following simu-
lations are presented in table 2 and, similarly to the
trajectory optimizer, were determined by applying
the system identification.

Table 2: FRIENDS hexacopter parameters and con-
trol input constraints.

Attitude Constants Optimization Limits

Kφ 0.9951 V +
xy 2.0 [m/s]

Kθ 0.9634 V +
z 3.0 [m/s]

Kψ 0.9900 T− 4.0 [m/s2]

τφ 0.1430 T+ 15.0 [m/s2]

τθ 0.1650 φ+ 30.0 [◦]

τψ 0.3020 θ+ 30.0 [◦]

As for the cost matrices, the implemented weights
penalize mainly the position and velocity state er-
rors that are fundamental for accurate trajectory
tracking. The input weights are considerably small-
er and will allow the optimizer to correct the most
penalized errors by adjusting the attitude and main-
ly the thrust command references calculated by the
trajectory optimizer.

Several simulations were executed and analysed
to validate the stability and robustness of the de-
signed MPC. In this paper, we chose to present two
trajectory tracking simulations with two types of
pre-computed trajectories.

5.3. Trajectory Tracking with Wind
We first present the results of the MPC when
tracking a smooth continuous polynomial trajecto-
ry while the UAV is subject to simulated external
forces. This test allows us to validate the capabili-
ty of the control algorithm in eliminating the effect
of unpredictable external disturbances. In order to
perform this simulation, we used the wind plugin
provided by the PX4 community.

Figure 8: Tested Trajectory with Wind.

Under external wind of around 4[m/s], the posi-
tion error is shown in Figure 9. The MPC controller

(a) Error X

(b) Error Y

(c) Error Z

Figure 9: MPC Trajectory Tracking error with
Wind.

achieved a maximum error of 20 cm in the sharp
corners of the polynomial path, which validates the
ability of this controller to eliminate the effects of
external disturbances.

5.4. Full Control Architecture Simulation

Finally, a simulation is performed where the path
optimized in the first scenario of the trajectory gen-
erator is used as a reference for the MPC. The mis-
sion performed by the simulated UAV can be divid-
ed into 3 distinct stages:

Initially, the UAV performs vertical take-off us-
ing only the PX4 autopilot controlling loops. Then
the second phase starts where the translational con-
trol is shifted from the autopilot to the off-board
MPC. In this phase, the UAV starts by adjusting
the height to the desired altitude above the terrain.
After the terrain following trajectory is optimized
the execution of the mission resumes. Finally, after
arriving at the last waypoint the UAV lands us-
ing once again the PX4 autopilot controller and the
mission terminates.

The full mission can be seen in figure 10 and the
three phases are illustrated in figure 11 where the
altitude of the UAV is represented as a function of
time. We can therefore conclude that the designed
tracking controller is also capable of efficiently and
precisely track the trajectory optimized by the ter-
rain following algorithm.
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(a) Mission in 3D.

(b) Top-down view of the mission.

Figure 10: UAV terrain following Mission.

Figure 11: Altitude of the UAV in Mission.

6. Conclusions

This thesis proposes a solution for terrain-following
and avoidance with an optimum control trajectory
optimization and the design and validation of an
online controller capable of following the optimized
path even in the presence of external disturbances.
The first goal was achieved by a non-linear opti-
mization problem that employed the UAV dynam-
ics to determine an optimum control trajectory that
was able to pass through a pre-determined set of
horizontal waypoints while keeping the vertical dis-
tance to the ground inside a safe and operational
window. For the second objective, we tackled the
design and implantation of a controller based on a
Non-linear Model Predictive Control, where an it-

erative optimization problem generates control in-
puts in real-time. Finally, both algorithms were in-
tegrated together allowing for the validation of the
designed navigation architecture.
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